A scientific organisation planned to investigate carbon reduction strategies for the production of nickel and cobalt as battery-grade sulfate salts. Elemental Engineering was brought in to aid the investigation by constructing steady-state models that represent production of the battery materials. The models required detailed calculations to provide a breakdown of CO2 emission sources within the plant to aid in the carbon footprint reduction project.
The investigative process included development of two flowsheets, the first being production of Ni and Co from ore via a mixed hydroxide intermediate, and the second via a mixed sulphide intermediate with both options involving an HPAL autoclave circuit. A final option was also considered utilising a sulphide concentrate to produce the battery materials.
On-site reagent plants were also modelled including a hydrogen, hydrogen sulphide and acid plant in order to fully model the site energy requirements and carbon footprint.
Following the development of the models, the Elemental Engineering team carried out an investigation and submitted a written report to summarise the results of the models, and proposed alternative strategies to mitigate carbon emissions and reduce energy consumption.
Four flowsheets were considered via two potential intermediate products, utilising nickel laterite ore or a sulphide concentrate to produce battery-grade nickel and cobalt sulfate salts. Scope 1, 2 and aspects of scope 3 carbon emission intensities at each step for all flowsheets were calculated and evaluated in order to provide a complete picture of carbon footprint across the site and facilitate the investigation into carbon reduction strategies.
Using process-modelling software that allows for accurate simulation of hydrometallurgical facilities, the Elemental Engineering team was able to accurately create a steady-state mass and energy balance of each option considered.
A primary focus of the project was to evaluate the carbon footprint of the nickel and cobalt production methods. As a result, a complex energy balance was performed in addition to the mass balance. This included accurate modelling of reaction enthalpies, heat losses to the environment and energy changes through evaporation.
An acid plant, hydrogen plant and hydrogen sulfate plant were also modelled accurately to provide a more accurate estimate of carbon emissions, as each of these would contribute significantly to each scope.
Elemental Engineering accurately provided the overall scope 1, 2 carbon emissions, as well as aspects of scope 3 emissions of all options considered via the different intermediate pathways and feed compositions.
This included a breakdown of all the individual sources of carbon emissions including emissions due to carbon evolution from the processing of carbonate ores and other chemical reactions (by plant section), power draw, emissions related to reagent delivery, and production and combustion of fuels.
Carbon offsets were also taken into account by considering any carbon capture in tailings facilities and electricity generation from excess steam production from the on-site acid plant.
Following the development of the steady-state models and carbon emissions data, the team analysed the results and made recommendations to the organisation on potential carbon reduction options at scope 1, 2 and 3.
With the in-depth information provided by Elemental Engineering, the organisation could see a clear path for reducing the carbon footprint of battery production for future nickel and cobalt production plants.
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-advertisement | 1 year | Set by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category . |
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other". |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
elementor | never | This cookie is used by the website's WordPress theme. It allows the website owner to implement or change the website's content in real-time. |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
Cookie | Duration | Description |
---|---|---|
nitroCachedPage | session | This cookie is needed to upgrade the speed of the website |
Cookie | Duration | Description |
---|---|---|
_ga | 2 years | The _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors. |
_ga_9JQHVJ4501 | 2 years | This cookie is installed by Google Analytics. |
_gat_gtag_UA_41853541_1 | 1 minute | This cookie is set by Google and is used to distinguish users. |
_gid | 1 day | Installed by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously. |
ac_enable_tracking | 1 month | This cookie is set by Active Campaign to denote that traffic is enabled for the website. |
CONSENT | 16 years 3 months 17 days 20 hours | These cookies are set via embedded youtube-videos. They register anonymous statistical data on for example how many times the video is displayed and what settings are used for playback. No sensitive data is collected unless you log in to your google account, in that case your choices are linked with your account, for example if you click “like” on a video. |
Cookie | Duration | Description |
---|---|---|
prism_225207103 | 1 month | No description |
Cookie | Duration | Description |
---|---|---|
IDE | 1 year 24 days | Google DoubleClick IDE cookies are used to store information about how the user uses the website to present them with relevant ads and according to the user profile. |
test_cookie | 15 minutes | The test_cookie is set by doubleclick.net and is used to determine if the user's browser supports cookies. |
VISITOR_INFO1_LIVE | 5 months 27 days | A cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface. |
YSC | session | YSC cookie is set by Youtube and is used to track the views of embedded videos on Youtube pages. |
yt-remote-connected-devices | never | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |
yt-remote-device-id | never | YouTube sets this cookie to store the video preferences of the user using embedded YouTube video. |